| categories | | | |------------|---|---| | EC | Erosion Control | × | | SE | Sediment Control | × | | TC | Tracking Control | | | WE | Wind Erosion Control | | | NS | Non-Stormwater
Management Control | V | | WM | Waste Management and
Materials Pollution Control | | #### Legend: Categories - ☑ Primary Objective - **☒** Secondary Objective ## **Description and Purpose** Water conservation practices are activities that use water during the construction of a project in a manner that avoids causing erosion and the transport of pollutants offsite. These practices can reduce or eliminate non-stormwater discharges. ## **Suitable Applications** Water conservation practices are suitable for all construction sites where water is used, including piped water, metered water, trucked water, and water from a reservoir. #### Limitations None identified. #### **Implementation** - Keep water equipment in good working condition. - Stabilize water truck filling area. - Repair water leaks promptly. - Washing of vehicles and equipment on the construction site is discouraged. - Avoid using water to clean construction areas. If water must be used for cleaning or surface preparation, surface should be swept and vacuumed first to remove dirt. This will minimize amount of water required. - Direct construction water runoff to areas where it can soak ## **Targeted Constituents** Sediment ✓ Nutrients Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** None into the ground or be collected and reused. - Authorized non-stormwater discharges to the storm drain system, channels, or receiving waters are acceptable with the implementation of appropriate BMPs. - Lock water tank valves to prevent unauthorized use. #### Costs The cost is small to none compared to the benefits of conserving water. ## **Inspection and Maintenance** - Inspect and verify that activity based BMPs are in place prior to the commencement of authorized non-stormwater discharges. - Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges are occurring. - Repair water equipment as needed to prevent unintended discharges. - Water trucks - Water reservoirs (water buffalos) - Irrigation systems - Hydrant connections #### References Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. # **Dewatering Operations** | Categories | | | | | |------------|---|--------------|--|--| | EC | Erosion Control | | | | | SE | Sediment Control | × | | | | TC | Tracking Control | | | | | WE | Wind Erosion Control | | | | | NS | Non-Stormwater
Management Control | \checkmark | | | | WM | Waste Management and
Materials Pollution Control | | | | | Leaend: | | | | | - ☑ Primary Category - ▼ Secondary Category ## **Description and Purpose** Dewatering operations are practices that manage the discharge of pollutants when non-stormwater and accumulated precipitation (stormwater) must be removed from a work location to proceed with construction work or to provide vector control. The General Permit incorporates Numeric Effluent Limits (NEL) and Numeric Action Levels (NAL) for turbidity (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements). Discharges from dewatering operations can contain high levels of fine sediment and other pollutants that, if not properly treated, could lead to exceedences of the General Permit requirements or Basin Plan standards. #### Suitable Applications These practices are implemented for discharges of nonstormwater from construction sites. Non-stormwaters include, but are not limited to, groundwater, water from cofferdams, water diversions, and waters used during construction activities that must be removed from a work area to facilitate construction. Practices identified in this section are also appropriate for implementation when managing the removal of accumulated precipitation (stormwater) from depressed areas at a construction site. Stormwater mixed with non-stormwater should be managed as non-stormwater. ## **Targeted Constituents** Sediment $\mathbf{\Lambda}$ **Nutrients** Trash Metals Bacteria Oil and Grease \square **Organics** #### Potential Alternatives SE-5: Fiber Roll SE-6: Gravel Bag Berm #### Limitations - Dewatering operations will require, and should comply with applicable local and projectspecific permits and regulations. In some areas, all dewatering activities, regardless of the discharge volume, require a dewatering permit. - Site conditions will dictate design and use of dewatering operations. - The controls discussed in this fact sheet primarily address sediment. Other secondary pollutant removal benefits are discussed where applicable. - The controls detailed in this fact sheet only allow for minimal settling time for sediment particles. Use only when site conditions restrict the use of the other control methods. - Avoid dewatering discharges where possible by using the water for dust control. ## **Implementation** - A Construction Site Monitoring Plan (CSMP) should be included in the project Stormwater Pollution Prevention Plan (SWPPP). - Regional Water Quality Control Board (RWQCB) Regions may require notification and approval prior to any discharge of water from construction sites. - The destination of discharge from dewatering activities will typically determine the type of permit required by the discharger. For example, when discharging to a water of the U.S., a dewatering permit may be required from the site's governing RWQCB. When discharging to a sanitary sewer or Municipal Separate Storm Sewer System (MS4), a permit may need to be obtained through the owner of the sanitary sewer or MS4 in addition to obtaining an RWQCB dewatering permit. Additional permits or permissions from other agencies may be required for dewatering cofferdams or diversions. - Dewatering discharges should not cause erosion at the discharge point. Appropriate BMPs should be implemented to maintain compliance with all applicable permits. - Maintain dewatering records in accordance with all local and project-specific permits and regulations. #### **Sediment Treatment** A variety of methods can be used to treat water during dewatering operations. Several devices are presented below and provide options to achieve sediment removal. The sediment particle size and permit or receiving water limitations on sediment or turbidity are key considerations for selecting sediment treatment option(s); in some cases, the use of multiple devices may be appropriate. Use of other enhanced treatment methods (i.e., introduction of chemicals or electric current to enhance flocculation and removal of sediment) must comply with: 1) for storm drain or surface water discharges, the requirements for Active Treatment Systems (see SE-11); or 2) for sanitary sewer discharges, the requirements of applicable sanitary sewer discharge permits. #### Sediment Basin (see also SE-2) #### Description: ■ A sediment basin is a temporary basin with a controlled release structure that is formed by excavation or construction of an embankment to detain sediment-laden runoff and allow sediment to settle out before discharging. Sediment basins are generally larger than Sediment Traps (SE-3) and have a designed outlet structure. ## Appropriate Applications: ■ Effective for the removal of trash, gravel, sand, silt, some metals that settle out with the sediment. ## Implementation: - Excavation and construction of related facilities is required. - Temporary sediment basins should be fenced if safety is a concern. - Outlet protection is required to prevent erosion at the outfall location. #### Maintenance: - Maintenance is required for safety fencing, vegetation, embankment, inlet and outlet, as well as other features. - Removal of sediment is required when the storage volume is reduced by one-third. #### Sediment Trap (See also SE-3) ## Description: A sediment trap is a temporary basin formed by excavation and/or construction of an earthen embankment across a waterway or low drainage area to detain sediment-laden runoff and allow sediment to settle out before discharging. Sediment traps are generally smaller than Sediment Basins (SE-2) and do not have a designed outlet (but do have a spillway or overflow). ## Appropriate Applications: Effective for the removal of large and medium sized particles (sand and gravel) and some metals that settle out with the sediment. #### Implementation: - Excavation and construction of related facilities is required. - Trap inlets should be located to maximize the travel distance to the trap outlet. - Use rock or vegetation to protect the trap outlets against erosion. - Maintenance is required for vegetation, embankment, inlet and outfall structures, as well as other features. - Removal of sediment is required when the storage volume is reduced by one-third. #### Weir Tanks ## Description: A weir tank separates water and waste by using weirs. The configuration of the weirs (over and under weirs) maximizes the residence time in the tank and determines the waste to be removed from the water, such as oil, grease, and sediments. ## Appropriate Applications: ■ The tank removes trash, some settleable solids (gravel, sand, and silt), some visible oil and grease, and some metals (removed with sediment). To achieve high levels of flow, multiple tanks can be used in parallel. If additional treatment is desired, the tanks can be placed in series or as pre-treatment for other methods. ##
Implementation: - Tanks are delivered to the site by the vendor, who can provide assistance with set-up and operation. - Tank size will depend on flow volume, constituents of concern, and residency period required. Vendors should be consulted to appropriately size tank. - Treatment capacity (i.e., volume and number of tanks) should provide at a minimum the required volume for discrete particle settling for treatment design flows. - Periodic cleaning is required based on visual inspection or reduced flow. - Oil and grease disposal should be conducted by a licensed waste disposal company. ## **Dewatering Tanks** ## Description: A dewatering tank removes debris and sediment. Flow enters the tank through the top, passes through a fabric filter, and is discharged through the bottom of the tank. The filter separates the solids from the liquids. ## Appropriate Applications: ■ The tank removes trash, gravel, sand, and silt, some visible oil and grease, and some metals (removed with sediment). To achieve high levels of flow, multiple tanks can be used in parallel. If additional treatment is desired, the tanks can be placed in series or as pretreatment for other methods. ## Implementation: - Tanks are delivered to the site by the vendor, who can provide assistance with set-up and operation. - Tank size will depend on flow volume, constituents of concern, and residency period required. Vendors should be consulted to appropriately size tank. - Periodic cleaning is required based on visual inspection or reduced flow. - Oil and grease disposal should be conducted by licensed waste disposal company. ## **Gravity Bag Filter** ## Description: A gravity bag filter, also referred to as a dewatering bag, is a square or rectangular bag made of non-woven geotextile fabric that collects gravel, sand, silt, and fines. ## Appropriate Applications: ■ Effective for the removal of sediments (gravel, sand, silt, and fines). Some metals are removed with the sediment. ## Implementation: - Water is pumped into one side of the bag and seeps through the top, bottom, and sides of the bag. - Place filter bag on pavement or a gravel bed or paved surface. Avoid placing a dewatering bag on unprotected bare soil. If placing the bag on bare soil is unavoidable, a secondary barrier should be used, such as a rock filter bed placed beneath and beyond the edges of the bag to, prevent erosion and capture sediments that escape the bag. - Perimeter control around the downstream end of the bag should be implemented. Secondary sediment controls are important especially in the initial stages of discharge, which tend to allow fines to pass through the bag. - Inspection of the flow conditions, bag condition, bag capacity, and the secondary barrier (as applicable) is required. - Replace the bag when it no longer filters sediment or passes water at a reasonable rate. - Caution should be taken when removing and disposing of the bag, to prevent the release of captured sediment - Properly dispose of the bag offsite. If sediment is removed from the bag prior to disposal (bags can potentially be reused depending upon their condition), dispose of sediment in accordance with the general maintenance procedures described at the end of this BMP Fact Sheet. ## Sand Media Particulate Filter ## Description: Water is treated by passing it through canisters filled with sand media. Generally, sand filters provide a final level of treatment. They are often used as a secondary or higher level of treatment after a significant amount of sediment and other pollutants have been removed using other methods. ## Appropriate Applications: - Effective for the removal of trash, gravel, sand, and silt and some metals, as well as the reduction of biochemical oxygen demand (BOD) and turbidity. - Sand filters can be used for stand-alone treatment or in conjunction with bag and cartridge filtration if further treatment is required. - Sand filters can also be used to provide additional treatment to water treated via settling or basic filtration. ## Implementation: ■ The filters require delivery to the site and initial set up. The vendor can provide assistance with installation and operation. - The filters require regular service to monitor and maintain the level of the sand media. If subjected to high loading rates, filters can plug quickly. - Venders generally provide data on maximum head loss through the filter. The filter should be monitored daily while in use, and cleaned when head loss reaches target levels. - If cleaned by backwashing, the backwash water may need to be hauled away for disposal, or returned to the upper end of the treatment train for another pass through the series of dewatering BMPs. ## **Pressurized Bag Filter** #### Pressurized Bag Filter ## Description: ■ A pressurized bag filter is a unit composed of single filter bags made from polyester felt material. The water filters through the unit and is discharged through a header. Vendors provide bag filters in a variety of configurations. Some units include a combination of bag filters and cartridge filters for enhanced contaminant removal. ## Appropriate Applications: - Effective for the removal of sediment (sand and silt) and some metals, as well as the reduction of BOD, turbidity, and hydrocarbons. Oil absorbent bags are available for hydrocarbon removal. - Filters can be used to provide secondary treatment to water treated via settling or basic filtration. ## Implementation: ■ The filters require delivery to the site and initial set up. The vendor can provide assistance with installation and operation. #### Maintenance: ■ The filter bags require replacement when the pressure differential equals or exceeds the manufacturer's recommendation. ## Cartridge Filter ## Description: Cartridge filters provide a high degree of pollutant removal by utilizing a number of individual cartridges as part of a larger filtering unit. They are often used as a secondary or higher (polishing) level of treatment after a significant amount of sediment and other pollutants are removed. Units come with various cartridge configurations (for use in series with bag filters) or with a larger single cartridge filtration unit (with multiple filters within). ## Appropriate Applications: - Effective for the removal of sediment (sand, silt, and some clays) and metals, as well as the reduction of BOD, turbidity, and hydrocarbons. Hydrocarbons can effectively be removed with special resin cartridges. - Filters can be used to provide secondary treatment to water treated via settling or basic filtration. #### Implementation: ■ The filters require delivery to the site and initial set up. The vendor can provide assistance. #### Maintenance: ■ The cartridges require replacement when the pressure differential equals or exceeds the manufacturer's recommendation. #### Costs ■ Sediment control costs vary considerably depending on the dewatering and sediment treatment system that is selected. Pressurized filters tend to be more expensive than gravity settling, but are often more effective. Simple tanks are generally rented on a long-term basis (one or more months) and can range from \$360 per month for a 1,000 gallon tank to \$2,660 per month for a 10,000 gallon tank. Mobilization and demobilization costs vary considerably. ## **Inspection and Maintenance** - Inspect and verify that dewatering BMPs are in place and functioning prior to the commencement of activities requiring dewatering. - Inspect dewatering BMPs daily while dewatering activities are being conducted. ## **Dewatering Operations** - Inspect all equipment before use. Monitor dewatering operations to ensure they do not cause offsite discharge or erosion. - Sample dewatering discharges as required by the General Permit. - Unit-specific maintenance requirements are included with the description of each unit. - Sediment removed during the maintenance of a dewatering device may be either spread onsite and stabilized, or disposed of at a disposal site as approved by the owner. - Sediment that is commingled with other pollutants should be disposed of in accordance with all applicable laws and regulations and as approved by the owner. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003; Updated March 2004. Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992. Labor Surcharge & Equipment Rental Rates, April 1, 2002 through March 31, 2003, California Department of Transportation (Caltrans). Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005. $\mathbf{\Lambda}$ ## Categories EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control WM Waste Management and Materials Pollution Control #### Legend: ☑ Primary Objective Secondary Objective ## **Description and Purpose** Procedures and practices designed for construction contractors to recognize illicit connections or illegally dumped or discharged materials on a construction site and report incidents. ## **Suitable Applications** This best management practice (BMP) applies to all construction projects. Illicit connection/discharge and reporting is applicable anytime an illicit connection or discharge is discovered or illegally dumped material is found on the construction site. #### Limitations Illicit connections and illegal discharges or dumping, for the purposes of this BMP, refer to discharges and dumping caused by parties other than the contractor. If pre-existing hazardous materials or wastes are known to exist onsite, they should be identified in
the SWPPP and handled as set forth in the SWPPP. ## **Implementation** #### **Planning** - Review the SWPPP. Pre-existing areas of contamination should be identified and documented in the SWPPP. - Inspect site before beginning the job for evidence of illicit connections, illegal dumping or discharges. Document any pre-existing conditions and notify the owner. - Inspect site regularly during project execution for evidence ## **Targeted Constituents** Sediment Nutrients ✓ Trash Metals Bacteria Oil and Grease ✓ Organics ✓ #### **Potential Alternatives** None of illicit connections, illegal dumping or discharges. • Observe site perimeter for evidence for potential of illicitly discharged or illegally dumped material, which may enter the job site. ## Identification of Illicit Connections and Illegal Dumping or Discharges - **General** unlabeled and unidentifiable material should be treated as hazardous. - **Solids** Look for debris, or rubbish piles. Solid waste dumping often occurs on roadways with light traffic loads or in areas not easily visible from the traveled way. - **Liquids** signs of illegal liquid dumping or discharge can include: - Visible signs of staining or unusual colors to the pavement or surrounding adjacent soils - Pungent odors coming from the drainage systems - Discoloration or oily substances in the water or stains and residues detained within ditches, channels or drain boxes - Abnormal water flow during the dry weather season - **Urban Areas** Evidence of illicit connections or illegal discharges is typically detected at storm drain outfall locations or at manholes. Signs of an illicit connection or illegal discharge can include: - Abnormal water flow during the dry weather season - Unusual flows in sub drain systems used for dewatering - Pungent odors coming from the drainage systems - Discoloration or oily substances in the water or stains and residues detained within ditches, channels or drain boxes - Excessive sediment deposits, particularly adjacent to or near active offsite construction projects - **Rural Areas** Illicit connections or illegal discharges involving irrigation drainage ditches are detected by visual inspections. Signs of an illicit discharge can include: - Abnormal water flow during the non-irrigation season - Non-standard junction structures - Broken concrete or other disturbances at or near junction structures ## Reporting Notify the owner of any illicit connections and illegal dumping or discharge incidents at the time of discovery. For illicit connections or discharges to the storm drain system, notify the local stormwater management agency. For illegal dumping, notify the local law enforcement agency. #### Cleanup and Removal The responsibility for cleanup and removal of illicit or illegal dumping or discharges will vary by location. Contact the local stormwater management agency for further information. #### Costs Costs to look for and report illicit connections and illegal discharges and dumping are low. The best way to avoid costs associated with illicit connections and illegal discharges and dumping is to keep the project perimeters secure to prevent access to the site, to observe the site for vehicles that should not be there, and to document any waste or hazardous materials that exist onsite before taking possession of the site. ## **Inspection and Maintenance** - Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Inspect the site regularly to check for any illegal dumping or discharge. - Prohibit employees and subcontractors from disposing of non-job related debris or materials at the construction site. - Notify the owner of any illicit connections and illegal dumping or discharge incidents at the time of discovery. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992. \mathbf{V} \square ## Categories **EC** Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control WM Waste Management and Materials Pollution Control #### Legend: ☑ Primary Objective Secondary Objective ## **Description and Purpose** Vehicle equipment fueling procedures and practices are designed to prevent fuel spills and leaks, and reduce or eliminate contamination of stormwater. This can be accomplished by using offsite facilities, fueling in designated areas only, enclosing or covering stored fuel, implementing spill controls, and training employees and subcontractors in proper fueling procedures. ## **Suitable Applications** These procedures are suitable on all construction sites where vehicle and equipment fueling takes place. #### Limitations Onsite vehicle and equipment fueling should only be used where it is impractical to send vehicles and equipment offsite for fueling. Sending vehicles and equipment offsite should be done in conjunction with TC-1, Stabilized Construction Entrance/ Exit. #### **Implementation** - Use offsite fueling stations as much as possible. These businesses are better equipped to handle fuel and spills properly. Performing this work offsite can also be economical by eliminating the need for a separate fueling area at a site. - Discourage "topping-off" of fuel tanks. - Absorbent spill cleanup materials and spill kits should be available in fueling areas and on fueling trucks, and should ## **Targeted Constituents** Sediment **Nutrients** Trash Metals Bacteria Oil and Grease **Organics** #### **Potential Alternatives** None be disposed of properly after use. - Drip pans or absorbent pads should be used during vehicle and equipment fueling, unless the fueling is performed over an impermeable surface in a dedicated fueling area. - Use absorbent materials on small spills. Do not hose down or bury the spill. Remove the adsorbent materials promptly and dispose of properly. - Avoid mobile fueling of mobile construction equipment around the site; rather, transport the equipment to designated fueling areas. With the exception of tracked equipment such as bulldozers and large excavators, most vehicles should be able to travel to a designated area with little lost time. - Train employees and subcontractors in proper fueling and cleanup procedures. - When fueling must take place onsite, designate an area away from drainage courses to be used. Fueling areas should be identified in the SWPPP. - Dedicated fueling areas should be protected from stormwater runon and runoff, and should be located at least 50 ft away from downstream drainage facilities and watercourses. Fueling must be performed on level-grade areas. - Protect fueling areas with berms and dikes to prevent runon, runoff, and to contain spills. - Nozzles used in vehicle and equipment fueling should be equipped with an automatic shutoff to control drips. Fueling operations should not be left unattended. - Use vapor recovery nozzles to help control drips as well as air pollution where required by Air Quality Management Districts (AQMD). - Federal, state, and local requirements should be observed for any stationary above ground storage tanks. #### Costs All of the above measures are low cost except for the capital costs of above ground tanks that meet all local environmental, zoning, and fire codes. #### **Inspection and Maintenance** - Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Vehicles and equipment should be inspected each day of use for leaks. Leaks should be repaired immediately or problem vehicles or equipment should be removed from the project site. - Keep ample supplies of spill cleanup materials onsite. ## Vehicle and Equipment Fueling **NS-9** ■ Immediately clean up spills and properly dispose of contaminated soil and cleanup materials. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992. \mathbf{V} ## Categories - **Erosion Control** - SE Sediment Control - TC Tracking Control - WF Wind Erosion Control - Non-Stormwater NS Management Control - Waste Management and WM - \mathbf{V} Materials Pollution Control #### Legend: - Primary Category - Secondary Category ## **Description and Purpose** Concrete curing is used in the construction of structures such as bridges, retaining walls, pump houses, large slabs, and structured foundations. Concrete curing includes the use of both chemical and water methods. Concrete and its associated curing materials have basic
chemical properties that can raise the pH of water to levels outside of the permitted range. Discharges of stormwater and non-stormwater exposed to concrete during curing may have a high pH and may contain chemicals, metals, and fines. The General Permit incorporates Numeric Effluent Limits (NEL) and Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements). Proper procedures and care should be taken when managing concrete curing materials to prevent them from coming into contact with stormwater flows, which could result in a high pH discharge. #### Suitable Applications Suitable applications include all projects where Portland Cement Concrete (PCC) and concrete curing chemicals are placed where they can be exposed to rainfall, runoff from other areas, or where runoff from the PCC will leave the site. ## **Targeted Constituents** $\mathbf{\Lambda}$ Sediment **Nutrients** Trash $\sqrt{}$ Metals Bacteria \square Oil and Grease **Organics** #### **Potential Alternatives** None #### Limitations ■ Runoff contact with concrete waste can raise pH levels in the water to environmentally harmful levels and trigger permit violations. ## Implementation ## **Chemical Curing** - Avoid over spray of curing compounds. - Minimize the drift by applying the curing compound close to the concrete surface. Apply an amount of compound that covers the surface, but does not allow any runoff of the compound. - Use proper storage and handling techniques for concrete curing compounds. Refer to WM-1, Material Delivery and Storage. - Protect drain inlets prior to the application of curing compounds. - Refer to WM-4, Spill Prevention and Control. ## Water Curing for Bridge Decks, Retaining Walls, and other Structures - Direct cure water away from inlets and watercourses to collection areas for evaporation or other means of removal in accordance with all applicable permits. See WM-8 Concrete Waste Management. - Collect cure water at the top of slopes and transport to a concrete waste management area in a non-erosive manner. See EC-9 Earth Dikes and Drainage Swales, EC-10, Velocity Dissipation Devices, and EC-11, Slope Drains. - Utilize wet blankets or a similar method that maintains moisture while minimizing the use and possible discharge of water. #### Education - Educate employees, subcontractors, and suppliers on proper concrete curing techniques to prevent contact with discharge as described herein. - Arrange for the QSP or the appropriately trained contractor's superintendent or representative to oversee and enforce concrete curing procedures. #### Costs All of the above measures are generally low cost. ## **Inspection and Maintenance** - Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. - BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur. - Sample non-stormwater discharges and stormwater runoff that contacts uncured and partially cured concrete as required by the General Permit. - Ensure that employees and subcontractors implement appropriate measures for storage, handling, and use of curing compounds. - Inspect cure containers and spraying equipment for leaks. #### References Blue Print for a Clean Bay-Construction-Related Industries: Best Management Practices for Stormwater Pollution Prevention; Santa Clara Valley Non Point Source Pollution Control Program, 1992. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003. Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992. Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005. \mathbf{V} ## Categories - EC Erosion Control - SE Sediment Control - TC Tracking Control - WE Wind Erosion Control - NS Non-Stormwater Management Control - Waste Management and - waste Management and Materials Pollution Control #### Legend: - ☑ Primary Category - Secondary Category ## **Description and Purpose** Concrete finishing methods are used for bridge deck rehabilitation, paint removal, curing compound removal, and final surface finish appearances. Methods include sand blasting, shot blasting, grinding, or high pressure water blasting. Stormwater and non-stormwater exposed to concrete finishing by-products may have a high pH and may contain chemicals, metals, and fines. Proper procedures and implementation of appropriate BMPs can minimize the impact that concrete-finishing methods may have on stormwater and non-stormwater discharges. The General Permit incorporates Numeric Effluent Limits (NEL) and Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements). Concrete and its associated curing materials have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows, which could lead to exceedances of the General Permit requirements. #### **Suitable Applications** These procedures apply to all construction locations where concrete finishing operations are performed. ## **Targeted Constituents** Sediment **Nutrients** Trash Metals **☑** Bacteria Oil and Grease Organics #### **Potential Alternatives** None #### Limitations Runoff contact with concrete waste can raise pH levels in the water to environmentally harmful levels and trigger permit violations. ## **Implementation** - Collect and properly dispose of water from high-pressure water blasting operations. - Collect contaminated water from blasting operations at the top of slopes. Transport or dispose of contaminated water while using BMPs such as those for erosion control. Refer to EC-9, Earth Dikes and Drainage Swales, EC-10, Velocity Dissipation Devices, and EC-11, Slope Drains. - Direct water from blasting operations away from inlets and watercourses to collection areas for infiltration or other means of removal (dewatering). Refer to NS-2 Dewatering Operations. - Protect inlets during sandblasting operations. Refer to SE-10, Storm Drain Inlet Protection. - Refer to WM-8, Concrete Waste Management for disposal of concrete debris. - Minimize the drift of dust and blast material as much as possible by keeping the blasting nozzle close to the surface. - When blast residue contains a potentially hazardous waste, refer to WM-6, Hazardous Waste Management. #### Education - Educate employees, subcontractors, and suppliers on proper concrete finishing techniques to prevent contact with discharge as described herein. - Arrange for the QSP or the appropriately trained contractor's superintendent or representative to oversee and enforce concrete finishing procedures. #### Costs These measures are generally of low cost. ## **Inspection and Maintenance** - Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. - BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur. - Sample non-stormwater discharges and stormwater runoff that contacts concrete dust and debris as required by the General Permit. - Sweep or vacuum up debris from sandblasting at the end of each shift. - At the end of each work shift, remove and contain liquid and solid waste from containment structures, if any, and from the general work area. - Inspect containment structures for damage prior to use and prior to onset of forecasted rain. ## References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003. Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992. ## Categories EC Erosion ControlSE Sediment Control TC Tracking Control WE Wind Erosion Co WE Wind Erosion Control NS Non-Stormwater Waste Management and Materials Pollution Control \checkmark $\overline{\mathbf{A}}$ \mathbf{V} $\sqrt{}$ $\sqrt{}$ \square $\mathbf{\Lambda}$ #### Legend: Sediment **Nutrients** Trash Metals Bacteria **Organics** Oil and Grease ☑ Primary Category Secondary Category **Targeted Constituents** ## **Description and Purpose** Prevent, reduce, or eliminate the discharge of pollutants from material delivery and storage to the stormwater system or watercourses by minimizing the storage of hazardous materials onsite, storing materials in watertight containers and/or a completely enclosed designated area, installing secondary containment, conducting regular inspections, and training employees and subcontractors. This best management practice covers only material delivery and storage. For other information on materials, see WM-2, Material Use, or WM-4, Spill Prevention and Control. For information on wastes, see the waste management BMPs in this
section. ## Potential Alternatives None ## **Suitable Applications** These procedures are suitable for use at all construction sites with delivery and storage of the following materials: - Soil stabilizers and binders - Pesticides and herbicides - Fertilizers - Detergents - Plaster - Petroleum products such as fuel, oil, and grease - Asphalt and concrete components - Hazardous chemicals such as acids, lime, glues, adhesives, paints, solvents, and curing compounds - Concrete compounds - Other materials that may be detrimental if released to the environment #### Limitations - Space limitation may preclude indoor storage. - Storage sheds often must meet building and fire code requirements. ## **Implementation** The following steps should be taken to minimize risk: - Chemicals must be stored in water tight containers with appropriate secondary containment or in a storage shed. - When a material storage area is located on bare soil, the area should be lined and bermed. - Use containment pallets or other practical and available solutions, such as storing materials within newly constructed buildings or garages, to meet material storage requirements. - Stack erodible landscape material on pallets and cover when not in use. - Contain all fertilizers and other landscape materials when not in use. - Temporary storage areas should be located away from vehicular traffic. - Material Safety Data Sheets (MSDS) should be available on-site for all materials stored that have the potential to effect water quality. - Construction site areas should be designated for material delivery and storage. - Material delivery and storage areas should be located away from waterways, if possible. - Avoid transport near drainage paths or waterways. - Surround with earth berms or other appropriate containment BMP. See EC-9, Earth Dikes and Drainage Swales. - Place in an area that will be paved. - Storage of reactive, ignitable, or flammable liquids must comply with the fire codes of your area. Contact the local Fire Marshal to review site materials, quantities, and proposed storage area to determine specific requirements. See the Flammable and Combustible Liquid Code, NFPA30. - An up to date inventory of materials delivered and stored onsite should be kept. - Hazardous materials storage onsite should be minimized. - Hazardous materials should be handled as infrequently as possible. - Keep ample spill cleanup supplies appropriate for the materials being stored. Ensure that cleanup supplies are in a conspicuous, labeled area. - Employees and subcontractors should be trained on the proper material delivery and storage practices. - Employees trained in emergency spill cleanup procedures must be present when dangerous materials or liquid chemicals are unloaded. - If significant residual materials remain on the ground after construction is complete, properly remove and dispose of materials and any contaminated soil. See WM-7, Contaminated Soil Management. If the area is to be paved, pave as soon as materials are removed to stabilize the soil. ## Material Storage Areas and Practices - Liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 should be stored in approved containers and drums and should not be overfilled. Containers and drums should be placed in temporary containment facilities for storage. - A temporary containment facility should provide for a spill containment volume able to contain precipitation from a 25 year storm event, plus the greater of 10% of the aggregate volume of all containers or 100% of the capacity of the largest container within its boundary, whichever is greater. - A temporary containment facility should be impervious to the materials stored therein for a minimum contact time of 72 hours. - A temporary containment facility should be maintained free of accumulated rainwater and spills. In the event of spills or leaks, accumulated rainwater and spills should be collected and placed into drums. These liquids should be handled as a hazardous waste unless testing determines them to be non-hazardous. All collected liquids or non-hazardous liquids should be sent to an approved disposal site. - Sufficient separation should be provided between stored containers to allow for spill cleanup and emergency response access. - Incompatible materials, such as chlorine and ammonia, should not be stored in the same temporary containment facility. - Materials should be covered prior to, and during rain events. - Materials should be stored in their original containers and the original product labels should be maintained in place in a legible condition. Damaged or otherwise illegible labels should be replaced immediately. - Bagged and boxed materials should be stored on pallets and should not be allowed to accumulate on the ground. To provide protection from wind and rain throughout the rainy season, bagged and boxed materials should be covered during non-working days and prior to and during rain events. - Stockpiles should be protected in accordance with WM-3, Stockpile Management. - Materials should be stored indoors within existing structures or completely enclosed storage sheds when available. - Proper storage instructions should be posted at all times in an open and conspicuous location. - An ample supply of appropriate spill clean up material should be kept near storage areas. - Also see WM-6, Hazardous Waste Management, for storing of hazardous wastes. ## **Material Delivery Practices** - Keep an accurate, up-to-date inventory of material delivered and stored onsite. - Arrange for employees trained in emergency spill cleanup procedures to be present when dangerous materials or liquid chemicals are unloaded. ## Spill Cleanup - Contain and clean up any spill immediately. - Properly remove and dispose of any hazardous materials or contaminated soil if significant residual materials remain on the ground after construction is complete. See WM-7, Contaminated Soil Management. - See WM-4, Spill Prevention and Control, for spills of chemicals and/or hazardous materials. - If spills or leaks of materials occur that are not contained and could discharge to surface waters, non-visible sampling of site discharge may be required. Refer to the General Permit or to your project specific Construction Site Monitoring Plan to determine if and where sampling is required. #### Cost ■ The largest cost of implementation may be in the construction of a materials storage area that is covered and provides secondary containment. #### **Inspection and Maintenance** - BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Keep storage areas clean and well organized, including a current list of all materials onsite. - Inspect labels on containers for legibility and accuracy. ## **Material Delivery and Storage** **WM-1** ■ Repair or replace perimeter controls, containment structures, covers, and liners as needed to maintain proper function. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003. Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992. **Material Use** WM-2 ## Categories **Erosion Control** SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM Materials Pollution Control $\overline{\mathbf{Q}}$ #### Legend: Primary Category ▼ Secondary Category ## **Description and Purpose** Prevent or reduce the discharge of pollutants to the storm drain system or watercourses from material use by using alternative products, minimizing hazardous material use onsite, and training employees and subcontractors. ## **Suitable Applications** This BMP is suitable for use at all construction projects. These procedures apply when the following materials are used or prepared onsite: - Pesticides and herbicides - **Fertilizers** - **Detergents** - Petroleum products such as fuel, oil, and grease - Asphalt and other concrete components - Other hazardous chemicals such as acids, lime, glues, adhesives, paints, solvents, and curing compounds - Other materials that may be detrimental if released to the environment ## **Targeted Constituents** Sediment $\overline{\mathbf{A}}$ **Nutrients** \mathbf{V} $\sqrt{}$ Trash $\sqrt{}$ Metals Bacteria Oil and Grease \square **Organics** \mathbf{V} #### **Potential Alternatives** None Material Use WM-2 #### Limitations Safer alternative building and construction products may not be available or suitable in every instance. ## Implementation The following steps should be taken to minimize risk: - Minimize use of hazardous materials onsite. - Follow manufacturer instructions regarding uses, protective equipment, ventilation, flammability, and mixing of chemicals. - Train personnel who use pesticides. The California Department of Pesticide Regulation and county agricultural commissioners license pesticide dealers, certify pesticide applicators, and conduct onsite inspections. - The preferred method of termiticide application is soil injection near the existing or proposed structure foundation/slab; however, if not feasible, soil drench application of termiticides should follow EPA label guidelines and the following recommendations (most of which are
applicable to most pesticide applications): - Do not treat soil that is water-saturated or frozen. - Application shall not commence within 24-hours of a predicted precipitation event with a 40% or greater probability. Weather tracking must be performed on a daily basis prior to termiticide application and during the period of termiticide application. - Do not allow treatment chemicals to runoff from the target area. Apply proper quantity to prevent excess runoff. Provide containment for and divert stormwater from application areas using berms or diversion ditches during application. - Dry season: Do not apply within 10 feet of storm drains. Do not apply within 25 feet of aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes or ponds; estuaries; and commercial fish farm ponds). - Wet season: Do not apply within 50 feet of storm drains or aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes or ponds; estuaries; and commercial fish farm ponds) unless a vegetative buffer is present (if so, refer to dry season requirements). - Do not make on-grade applications when sustained wind speeds are above 10 mph (at application site) at nozzle end height. - Cover treatment site prior to a rain event in order to prevent run-off of the pesticide into non-target areas. The treated area should be limited to a size that can be backfilled and/or covered by the end of the work shift. Backfilling or covering of the treated area shall be done by the end of the same work shift in which the application is made. - The applicator must either cover the soil him/herself or provide written notification of the above requirement to the contractor on site and to the person commissioning the Material Use WM-2 application (if different than the contractor). If notice is provided to the contractor or the person commissioning the application, then they are responsible under the Federal Insecticide Fungicide, and Rodenticide Act (FIFRA) to ensure that: 1) if the concrete slab cannot be poured over the treated soil within 24 hours of application, the treated soil is covered with a waterproof covering (such as polyethylene sheeting), and 2) the treated soil is covered if precipitation is predicted to occur before the concrete slab is scheduled to be poured. - Do not over-apply fertilizers, herbicides, and pesticides. Prepare only the amount needed. Follow the recommended usage instructions. Over-application is expensive and environmentally harmful. Unless on steep slopes, till fertilizers into the soil rather than hydraulic application. Apply surface dressings in several smaller applications, as opposed to one large application, to allow time for infiltration and to avoid excess material being carried offsite by runoff. Do not apply these chemicals before predicted rainfall. - Train employees and subcontractors in proper material use. - Supply Material Safety Data Sheets (MSDS) for all materials. - Dispose of latex paint and paint cans, used brushes, rags, absorbent materials, and drop cloths, when thoroughly dry and are no longer hazardous, with other construction debris. - Do not remove the original product label; it contains important safety and disposal information. Use the entire product before disposing of the container. - Mix paint indoors or in a containment area. Never clean paintbrushes or rinse paint containers into a street, gutter, storm drain, or watercourse. Dispose of any paint thinners, residue, and sludge(s) that cannot be recycled, as hazardous waste. - For water-based paint, clean brushes to the extent practicable, and rinse to a drain leading to a sanitary sewer where permitted, or contain for proper disposal off site. For oil-based paints, clean brushes to the extent practicable, and filter and reuse thinners and solvents. - Use recycled and less hazardous products when practical. Recycle residual paints, solvents, non-treated lumber, and other materials. - Use materials only where and when needed to complete the construction activity. Use safer alternative materials as much as possible. Reduce or eliminate use of hazardous materials onsite when practical. - Document the location, time, chemicals applied, and applicator's name and qualifications. - Keep an ample supply of spill clean up material near use areas. Train employees in spill clean up procedures. - Avoid exposing applied materials to rainfall and runoff unless sufficient time has been allowed for them to dry. - Discontinue use of erodible landscape material within 2 days prior to a forecasted rain event and materials should be covered and/or bermed. Material Use WM-2 ■ Provide containment for material use areas such as masons' areas or paint mixing/preparation areas to prevent materials/pollutants from entering stormwater. #### Costs All of the above are low cost measures. ## **Inspection and Maintenance** - Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. - BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Ensure employees and subcontractors throughout the job are using appropriate practices. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992. Comments on Risk Assessments Risk Reduction Options for Cypermethrin: Docket No. OPP–2005–0293; California Stormwater Quality Association (CASQA) letter to USEPA, 2006. Environmental Hazard and General Labeling for Pyrethroid Non-Agricultural Outdoor Products, EPA-HQ-OPP-2008-0331-0021; USEPA, 2008. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003. Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992. $\overline{\mathbf{Q}}$ ## **Description and Purpose** Prevent or reduce the discharge of pollutants to drainage systems or watercourses from leaks and spills by reducing the chance for spills, stopping the source of spills, containing and cleaning up spills, properly disposing of spill materials, and training employees. This best management practice covers only spill prevention and control. However, WM-1, Materials Delivery and Storage, and WM-2, Material Use, also contain useful information, particularly on spill prevention. For information on wastes, see the waste management BMPs in this section. ## Suitable Applications This BMP is suitable for all construction projects. Spill control procedures are implemented anytime chemicals or hazardous substances are stored on the construction site, including the following materials: - Soil stabilizers/binders - Dust palliatives - Herbicides - Growth inhibitors - **■** Fertilizers - Deicing/anti-icing chemicals ## Categories EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater Management Control Waste Management and Materials Pollution Control #### Legend: WM ☑ Primary Objective Secondary Objective ## **Targeted Constituents** Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** None - Fuels - Lubricants - Other petroleum distillates #### Limitations - In some cases it may be necessary to use a private spill cleanup company. - This BMP applies to spills caused by the contractor and subcontractors. - Procedures and practices presented in this BMP are general. Contractor should identify appropriate practices for the specific materials used or stored onsite ## **Implementation** The following steps will help reduce the stormwater impacts of leaks and spills: #### **Education** - Be aware that different materials pollute in different amounts. Make sure that each employee knows what a "significant spill" is for each material they use, and what is the appropriate response for "significant" and "insignificant" spills. - Educate employees and subcontractors on potential dangers to humans and the environment from spills and leaks. - Hold regular meetings to discuss and reinforce appropriate disposal procedures (incorporate into regular safety meetings). - Establish a continuing education program to indoctrinate new employees. - Have contractor's superintendent or representative oversee and enforce proper spill prevention and control measures. #### General Measures - To the extent that the work can be accomplished safely, spills of oil, petroleum products, substances listed under 40 CFR parts 110,117, and 302, and sanitary and septic wastes should be contained and cleaned up immediately. - Store hazardous materials and wastes in covered containers and protect from vandalism. - Place a stockpile of spill cleanup materials where it will be readily accessible. - Train employees in spill prevention and cleanup. - Designate responsible individuals to oversee and enforce control measures. - Spills should be covered and protected from stormwater runon during rainfall to the extent that it doesn't compromise clean up activities. - Do not bury or wash spills with water. - Store and dispose of used clean up materials, contaminated materials, and recovered spill material that is no longer suitable for the intended purpose in conformance with the provisions in applicable BMPs. - Do not allow water used for cleaning and decontamination to enter storm drains or watercourses. Collect and dispose of contaminated water in accordance with
WM-10, Liquid Waste Management. - Contain water overflow or minor water spillage and do not allow it to discharge into drainage facilities or watercourses. - Place proper storage, cleanup, and spill reporting instructions for hazardous materials stored or used on the project site in an open, conspicuous, and accessible location. - Keep waste storage areas clean, well organized, and equipped with ample cleanup supplies as appropriate for the materials being stored. Perimeter controls, containment structures, covers, and liners should be repaired or replaced as needed to maintain proper function. ## Cleanup - Clean up leaks and spills immediately. - Use a rag for small spills on paved surfaces, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be sent to either a certified laundry (rags) or disposed of as hazardous waste. - Never hose down or bury dry material spills. Clean up as much of the material as possible and dispose of properly. See the waste management BMPs in this section for specific information. ## **Minor Spills** - Minor spills typically involve small quantities of oil, gasoline, paint, etc. which can be controlled by the first responder at the discovery of the spill. - Use absorbent materials on small spills rather than hosing down or burying the spill. - Absorbent materials should be promptly removed and disposed of properly. - Follow the practice below for a minor spill: - Contain the spread of the spill. - Recover spilled materials. - Clean the contaminated area and properly dispose of contaminated materials. #### Semi-Significant Spills Semi-significant spills still can be controlled by the first responder along with the aid of other personnel such as laborers and the foreman, etc. This response may require the cessation of all other activities. - Spills should be cleaned up immediately: - Contain spread of the spill. - Notify the project foreman immediately. - If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the spill by encircling with absorbent materials and do not let the spill spread widely. - If the spill occurs in dirt areas, immediately contain the spill by constructing an earthen dike. Dig up and properly dispose of contaminated soil. - If the spill occurs during rain, cover spill with tarps or other material to prevent contaminating runoff. ## Significant/Hazardous Spills - For significant or hazardous spills that cannot be controlled by personnel in the immediate vicinity, the following steps should be taken: - Notify the local emergency response by dialing 911. In addition to 911, the contractor will notify the proper county officials. It is the contractor's responsibility to have all emergency phone numbers at the construction site. - Notify the Governor's Office of Emergency Services Warning Center, (916) 845-8911. - For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110,119, and 302, the contractor should notify the National Response Center at (800) 424-8802. - Notification should first be made by telephone and followed up with a written report. - The services of a spills contractor or a Haz-Mat team should be obtained immediately. Construction personnel should not attempt to clean up until the appropriate and qualified staffs have arrived at the job site. - Other agencies which may need to be consulted include, but are not limited to, the Fire Department, the Public Works Department, the Coast Guard, the Highway Patrol, the City/County Police Department, Department of Toxic Substances, California Division of Oil and Gas, Cal/OSHA, etc. #### Reporting - Report significant spills to local agencies, such as the Fire Department; they can assist in cleanup. - Federal regulations require that any significant oil spill into a water body or onto an adjoining shoreline be reported to the National Response Center (NRC) at 800-424-8802 (24 hours). Use the following measures related to specific activities: ## Vehicle and Equipment Maintenance - If maintenance must occur onsite, use a designated area and a secondary containment, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills. - Regularly inspect onsite vehicles and equipment for leaks and repair immediately - Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite. - Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids. - Place drip pans or absorbent materials under paving equipment when not in use. - Use absorbent materials on small spills rather than hosing down or burying the spill. Remove the absorbent materials promptly and dispose of properly. - Promptly transfer used fluids to the proper waste or recycling drums. Don't leave full drip pans or other open containers lying around - Oil filters disposed of in trashcans or dumpsters can leak oil and pollute stormwater. Place the oil filter in a funnel over a waste oil-recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask the oil supplier or recycler about recycling oil filters. - Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking. ### Vehicle and Equipment Fueling - If fueling must occur onsite, use designate areas, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills. - Discourage "topping off" of fuel tanks. - Always use secondary containment, such as a drain pan, when fueling to catch spills/ leaks. #### Costs Prevention of leaks and spills is inexpensive. Treatment and/ or disposal of contaminated soil or water can be quite expensive. #### **Inspection and Maintenance** ■ Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur. - Keep ample supplies of spill control and cleanup materials onsite, near storage, unloading, and maintenance areas. - Update your spill prevention and control plan and stock cleanup materials as changes occur in the types of chemicals onsite. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. # Categories EC Erosion ControlSE Sediment ControlTC Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control WM Waste Management and Materials Pollution Control \checkmark ## Legend: - ☑ Primary Objective - Secondary Objective ## **Description and Purpose** Solid waste management procedures and practices are designed to prevent or reduce the discharge of pollutants to stormwater from solid or construction waste by providing designated waste collection areas and containers, arranging for regular disposal, and training employees and subcontractors. ## Suitable Applications This BMP is suitable for construction sites where the following wastes are generated or stored: - Solid waste generated from trees and shrubs removed during land clearing, demolition of existing structures (rubble), and building construction - Packaging materials including wood, paper, and plastic - Scrap or surplus building materials including scrap metals, rubber, plastic, glass pieces, and masonry products - Domestic wastes including food containers such as beverage cans, coffee cups, paper bags, plastic wrappers, and cigarettes - Construction wastes including brick, mortar, timber, steel and metal scraps, pipe and electrical cuttings, nonhazardous equipment parts, styrofoam and other materials used to transport and package construction materials - Highway planting wastes, including vegetative material, # **Targeted Constituents** Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** plant containers, and packaging materials #### Limitations Temporary stockpiling of certain construction wastes may not necessitate stringent drainage related controls during the non-rainy season or in desert areas with low rainfall. ## **Implementation** The following steps will help keep a clean site and reduce stormwater pollution: - Select designated waste collection areas onsite. - Inform trash-hauling contractors that you will accept only watertight dumpsters for onsite use. Inspect dumpsters for leaks and repair any dumpster that is not watertight. - Locate containers in a covered area or in a secondary containment. - Provide an adequate number of containers with lids or covers that can be placed over the container to keep rain out or to prevent loss of wastes when it is windy. - Cover waste containers at the end of each work day and when it is raining. - Plan for additional containers and more frequent pickup during the demolition phase of construction. - Collect site trash daily, especially during rainy and windy conditions. - Remove this solid waste promptly since
erosion and sediment control devices tend to collect litter. - Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris. - Do not hose out dumpsters on the construction site. Leave dumpster cleaning to the trash hauling contractor. - Arrange for regular waste collection before containers overflow. - Clean up immediately if a container does spill. - Make sure that construction waste is collected, removed, and disposed of only at authorized disposal areas. #### **Education** - Have the contractor's superintendent or representative oversee and enforce proper solid waste management procedures and practices. - Instruct employees and subcontractors on identification of solid waste and hazardous waste. - Educate employees and subcontractors on solid waste storage and disposal procedures. - Hold regular meetings to discuss and reinforce disposal procedures (incorporate into regular safety meetings). - Require that employees and subcontractors follow solid waste handling and storage procedures. - Prohibit littering by employees, subcontractors, and visitors. - Minimize production of solid waste materials wherever possible. ## Collection, Storage, and Disposal - Littering on the project site should be prohibited. - To prevent clogging of the storm drainage system, litter and debris removal from drainage grates, trash racks, and ditch lines should be a priority. - Trash receptacles should be provided in the contractor's yard, field trailer areas, and at locations where workers congregate for lunch and break periods. - Litter from work areas within the construction limits of the project site should be collected and placed in watertight dumpsters at least weekly, regardless of whether the litter was generated by the contractor, the public, or others. Collected litter and debris should not be placed in or next to drain inlets, stormwater drainage systems, or watercourses. - Dumpsters of sufficient size and number should be provided to contain the solid waste generated by the project. - Full dumpsters should be removed from the project site and the contents should be disposed of by the trash hauling contractor. - Construction debris and waste should be removed from the site biweekly or more frequently as needed. - Construction material visible to the public should be stored or stacked in an orderly manner. - Stormwater runon should be prevented from contacting stored solid waste through the use of berms, dikes, or other temporary diversion structures or through the use of measures to elevate waste from site surfaces. - Solid waste storage areas should be located at least 50 ft from drainage facilities and watercourses and should not be located in areas prone to flooding or ponding. - Except during fair weather, construction and highway planting waste not stored in watertight dumpsters should be securely covered from wind and rain by covering the waste with tarps or plastic. - Segregate potentially hazardous waste from non-hazardous construction site waste. - Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris. - For disposal of hazardous waste, see WM-6, Hazardous Waste Management. Have hazardous waste hauled to an appropriate disposal and/or recycling facility. - Salvage or recycle useful vegetation debris, packaging and surplus building materials when practical. For example, trees and shrubs from land clearing can be used as a brush barrier, or converted into wood chips, then used as mulch on graded areas. Wood pallets, cardboard boxes, and construction scraps can also be recycled. #### Costs All of the above are low cost measures. ## **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur - Inspect construction waste area regularly. - Arrange for regular waste collection. #### References Processes, Procedures and Methods to Control Pollution Resulting from All Construction Activity, 430/9-73-007, USEPA, 1973. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. $\overline{\mathbf{Q}}$ # Categories EC Erosion ControlSE Sediment ControlTC Tracking ControlWE Wind Erosion ControlNon-Stormwater NS Management Control Waste Management an WM Waste Management and Materials Pollution Control #### Legend: ☑ Primary Objective **☒** Secondary Objective # **Description and Purpose** Prevent or reduce the discharge of pollutants to stormwater from hazardous waste through proper material use, waste disposal, and training of employees and subcontractors. # **Suitable Applications** This best management practice (BMP) applies to all construction projects. Hazardous waste management practices are implemented on construction projects that generate waste from the use of: Petroleum Products Asphalt Products Concrete Curing Compounds - Pesticides - Palliatives - Acids - Septic Wastes - Paints - Stains - Solvents Wood Preservatives Roofing Tar - Any materials deemed a hazardous waste in California, Title 22 Division 4.5, or listed in 40 CFR Parts 110, 117, 261, or 302 # **Targeted Constituents** Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** In addition, sites with existing structures may contain wastes, which must be disposed of in accordance with federal, state, and local regulations. These wastes include: - Sandblasting grit mixed with lead-, cadmium-, or chromium-based paints - Asbestos - PCBs (particularly in older transformers) #### Limitations - Hazardous waste that cannot be reused or recycled must be disposed of by a licensed hazardous waste hauler. - Nothing in this BMP relieves the contractor from responsibility for compliance with federal, state, and local laws regarding storage, handling, transportation, and disposal of hazardous wastes. - This BMP does not cover aerially deposited lead (ADL) soils. For ADL soils refer to WM-7, Contaminated Soil Management. ### **Implementation** The following steps will help reduce stormwater pollution from hazardous wastes: #### Material Use - Wastes should be stored in sealed containers constructed of a suitable material and should be labeled as required by Title 22 CCR, Division 4.5 and 49 CFR Parts 172, 173, 178, and 179. - All hazardous waste should be stored, transported, and disposed as required in Title 22 CCR, Division 4.5 and 49 CFR 261-263. - Waste containers should be stored in temporary containment facilities that should comply with the following requirements: - Temporary containment facility should provide for a spill containment volume equal to 1.5 times the volume of all containers able to contain precipitation from a 25 year storm event, plus the greater of 10% of the aggregate volume of all containers or 100% of the capacity of the largest tank within its boundary, whichever is greater. - Temporary containment facility should be impervious to the materials stored there for a minimum contact time of 72 hours. - Temporary containment facilities should be maintained free of accumulated rainwater and spills. In the event of spills or leaks, accumulated rainwater and spills should be placed into drums after each rainfall. These liquids should be handled as a hazardous waste unless testing determines them to be non-hazardous. Non-hazardous liquids should be sent to an approved disposal site. - Sufficient separation should be provided between stored containers to allow for spill cleanup and emergency response access. - Incompatible materials, such as chlorine and ammonia, should not be stored in the same temporary containment facility. - Throughout the rainy season, temporary containment facilities should be covered during non-working days, and prior to rain events. Covered facilities may include use of plastic tarps for small facilities or constructed roofs with overhangs. - Drums should not be overfilled and wastes should not be mixed. - Unless watertight, containers of dry waste should be stored on pallets. - Do not over-apply herbicides and pesticides. Prepare only the amount needed. Follow the recommended usage instructions. Over application is expensive and environmentally harmful. Apply surface dressings in several smaller applications, as opposed to one large application. Allow time for infiltration and avoid excess material being carried offsite by runoff. Do not apply these chemicals just before it rains. People applying pesticides must be certified in accordance with federal and state regulations. - Paint brushes and equipment for water and oil based paints should be cleaned within a contained area and should not be allowed to contaminate site soils, watercourses, or drainage systems. Waste paints, thinners, solvents, residues, and sludges that cannot be recycled or reused should be disposed of as hazardous waste. When thoroughly dry, latex paint and paint cans, used brushes, rags, absorbent materials, and drop cloths should be disposed of as solid waste. - Do not clean out brushes or rinse paint containers into the dirt, street, gutter, storm drain, or stream. "Paint out" brushes as much as possible. Rinse water-based paints to the sanitary sewer. Filter and reuse thinners and solvents. Dispose of excess oil-based paints
and sludge as hazardous waste. - The following actions should be taken with respect to temporary contaminant: - Ensure that adequate hazardous waste storage volume is available. - Ensure that hazardous waste collection containers are conveniently located. - Designate hazardous waste storage areas onsite away from storm drains or watercourses and away from moving vehicles and equipment to prevent accidental spills. - Minimize production or generation of hazardous materials and hazardous waste on the job site. - Use containment berms in fueling and maintenance areas and where the potential for spills is high. - Segregate potentially hazardous waste from non-hazardous construction site debris. - Keep liquid or semi-liquid hazardous waste in appropriate containers (closed drums or similar) and under cover. - Clearly label all hazardous waste containers with the waste being stored and the date of accumulation. - Place hazardous waste containers in secondary containment. - Do not allow potentially hazardous waste materials to accumulate on the ground. - Do not mix wastes. - Use all of the product before disposing of the container. - Do not remove the original product label; it contains important safety and disposal information. ## Waste Recycling Disposal - Select designated hazardous waste collection areas onsite. - Hazardous materials and wastes should be stored in covered containers and protected from vandalism. - Place hazardous waste containers in secondary containment. - Do not mix wastes, this can cause chemical reactions, making recycling impossible and complicating disposal. - Recycle any useful materials such as used oil or water-based paint. - Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris. - Arrange for regular waste collection before containers overflow. - Make sure that hazardous waste (e.g., excess oil-based paint and sludge) is collected, removed, and disposed of only at authorized disposal areas. ## **Disposal Procedures** - Waste should be disposed of by a licensed hazardous waste transporter at an authorized and licensed disposal facility or recycling facility utilizing properly completed Uniform Hazardous Waste Manifest forms. - A Department of Health Services certified laboratory should sample waste to determine the appropriate disposal facility. - Properly dispose of rainwater in secondary containment that may have mixed with hazardous waste. - Attention is directed to "Hazardous Material", "Contaminated Material", and "Aerially Deposited Lead" of the contract documents regarding the handling and disposal of hazardous materials. #### **Education** - Educate employees and subcontractors on hazardous waste storage and disposal procedures. - Educate employees and subcontractors on potential dangers to humans and the environment from hazardous wastes. - Instruct employees and subcontractors on safety procedures for common construction site hazardous wastes. - Instruct employees and subcontractors in identification of hazardous and solid waste. - Hold regular meetings to discuss and reinforce hazardous waste management procedures (incorporate into regular safety meetings). - The contractor's superintendent or representative should oversee and enforce proper hazardous waste management procedures and practices. - Make sure that hazardous waste is collected, removed, and disposed of only at authorized disposal areas. - Warning signs should be placed in areas recently treated with chemicals. - Place a stockpile of spill cleanup materials where it will be readily accessible. - If a container does spill, clean up immediately. #### Costs All of the above are low cost measures. ### **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.. - Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur - Hazardous waste should be regularly collected. - A foreman or construction supervisor should monitor onsite hazardous waste storage and disposal procedures. - Waste storage areas should be kept clean, well organized, and equipped with ample cleanup supplies as appropriate for the materials being stored. - Perimeter controls, containment structures, covers, and liners should be repaired or replaced as needed to maintain proper function. - Hazardous spills should be cleaned up and reported in conformance with the applicable Material Safety Data Sheet (MSDS) and the instructions posted at the project site. - The National Response Center, at (800) 424-8802, should be notified of spills of federal reportable quantities in conformance with the requirements in 40 CFR parts 110, 117, and 302. Also notify the Governors Office of Emergency Services Warning Center at (916) 845-8911. - A copy of the hazardous waste manifests should be provided. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Processes, Procedures and Methods to Control Pollution Resulting from All Construction Activity, 430/9-73-007, USEPA, 1973. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. # Categories | EC | Erosion Control | | |----|-----------------------------|----| | SE | Sediment Control | | | TC | Tracking Control | | | WE | Wind Erosion Control | | | NS | Non-Stormwater | | | | Management Control | | | WM | Waste Management and | V | | | Materials Pollution Control | ىك | Materials Pollution Control #### Legend: - Primary Objective - **Secondary Objective** ## **Description and Purpose** Prevent or reduce the discharge of pollutants to stormwater from contaminated soil and highly acidic or alkaline soils by conducting pre-construction surveys, inspecting excavations regularly, and remediating contaminated soil promptly. ## **Suitable Applications** Contaminated soil management is implemented on construction projects in highly urbanized or industrial areas where soil contamination may have occurred due to spills, illicit discharges, aerial deposition, past use and leaks from underground storage tanks. #### Limitations Contaminated soils that cannot be treated onsite must be disposed of offsite by a licensed hazardous waste hauler. The presence of contaminated soil may indicate contaminated water as well. See NS-2, Dewatering Operations, for more information. The procedures and practices presented in this BMP are general. The contractor should identify appropriate practices and procedures for the specific contaminants known to exist or discovered onsite. ## **Implementation** Most owners and developers conduct pre-construction environmental assessments as a matter of routine. Contaminated soils are often identified during project planning and development with known locations identified in the plans, specifications and in the SWPPP. The contractor should review applicable reports and investigate appropriate call-outs in the ## **Targeted Constituents** | Sediment | | |----------------|--------------| | Nutrients | \checkmark | | Trash | \checkmark | | Metals | \checkmark | | Bacteria | \checkmark | | Oil and Grease | \checkmark | | Organics | ✓ | #### **Potential Alternatives** plans, specifications, and SWPPP. Recent court rulings holding contractors liable for cleanup costs when they unknowingly move contaminated soil highlight the need for contractors to confirm a site assessment is completed before earth moving begins. The following steps will help reduce stormwater pollution from contaminated soil: - Conduct thorough, pre-construction inspections of the site and review documents related to the site. If inspection or reviews indicated presence of contaminated soils, develop a plan before starting work. - Look for contaminated soil as evidenced by discoloration, odors, differences in soil properties, abandoned underground tanks or pipes, or buried debris. - Prevent leaks and spills. Contaminated soil can be expensive to treat and dispose of properly. However, addressing the problem before construction is much less expensive than after the structures are in place. - The contractor may further identify contaminated soils by investigating: - Past site uses and activities - Detected or undetected spills and leaks - Acid or alkaline solutions from exposed soil or rock formations high in acid or alkaline forming elements - Contaminated soil as evidenced by discoloration, odors, differences in soil properties, abandoned underground tanks or pipes, or buried debris. - Suspected soils should be tested at a certified laboratory. #### **Education** - Have employees and subcontractors complete a safety training program which meets 29 CFR 1910.120 and 8 CCR 5192 covering the potential hazards as identified, prior to performing any excavation work at the locations containing material classified as hazardous. - Educate employees and subcontractors in identification of contaminated soil and on contaminated soil handling and disposal procedures. - Hold regular meetings to discuss and reinforce disposal procedures (incorporate into regular safety meetings). # Handling Procedures for Material with Aerially Deposited Lead (ADL) - Materials from areas designated as containing (ADL) may, if allowed by the contract special provisions, be excavated, transported, and used in the
construction of embankments and/or backfill. - Excavation, transportation, and placement operations should result in no visible dust. - Caution should be exercised to prevent spillage of lead containing material during transport. Quality should be monitored during excavation of soils contaminated with lead. ## **Handling Procedures for Contaminated Soils** - Minimize onsite storage. Contaminated soil should be disposed of properly in accordance with all applicable regulations. All hazardous waste storage will comply with the requirements in Title 22, CCR, Sections 66265.250 to 66265.260. - Test suspected soils at an approved certified laboratory. - Work with the local regulatory agencies to develop options for treatment or disposal if the soil is contaminated. - Avoid temporary stockpiling of contaminated soils or hazardous material. - Take the following precautions if temporary stockpiling is necessary: - Cover the stockpile with plastic sheeting or tarps. - Install a berm around the stockpile to prevent runoff from leaving the area. - Do not stockpile in or near storm drains or watercourses. - Remove contaminated material and hazardous material on exteriors of transport vehicles and place either into the current transport vehicle or into the excavation prior to the vehicle leaving the exclusion zone. - Monitor the air quality continuously during excavation operations at all locations containing hazardous material. - Procure all permits and licenses, pay all charges and fees, and give all notices necessary and incident to the due and lawful prosecution of the work, including registration for transporting vehicles carrying the contaminated material and the hazardous material. - Collect water from decontamination procedures and treat or dispose of it at an appropriate disposal site. - Collect non-reusable protective equipment, once used by any personnel, and dispose of at an appropriate disposal site. - Install temporary security fence to surround and secure the exclusion zone. Remove fencing when no longer needed. - Excavate, transport, and dispose of contaminated material and hazardous material in accordance with the rules and regulations of the following agencies (the specifications of these agencies supersede the procedures outlined in this BMP): - United States Department of Transportation (USDOT) - United States Environmental Protection Agency (USEPA) - California Environmental Protection Agency (CAL-EPA) - California Division of Occupation Safety and Health Administration (CAL-OSHA) - Local regulatory agencies ## **Procedures for Underground Storage Tank Removals** - Prior to commencing tank removal operations, obtain the required underground storage tank removal permits and approval from the federal, state, and local agencies that have jurisdiction over such work. - To determine if it contains hazardous substances, arrange to have tested, any liquid or sludge found in the underground tank prior to its removal. - Following the tank removal, take soil samples beneath the excavated tank and perform analysis as required by the local agency representative(s). - The underground storage tank, any liquid or sludge found within the tank, and all contaminated substances and hazardous substances removed during the tank removal and transported to disposal facilities permitted to accept such waste. ### Water Control - All necessary precautions and preventive measures should be taken to prevent the flow of water, including ground water, from mixing with hazardous substances or underground storage tank excavations. Such preventative measures may consist of, but are not limited to, berms, cofferdams, grout curtains, freeze walls, and seal course concrete or any combination thereof. - If water does enter an excavation and becomes contaminated, such water, when necessary to proceed with the work, should be discharged to clean, closed top, watertight transportable holding tanks, treated, and disposed of in accordance with federal, state, and local laws. #### Costs Prevention of leaks and spills is inexpensive. Treatment or disposal of contaminated soil can be quite expensive. #### **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Arrange for contractor's Water Pollution Control Manager, foreman, and/or construction supervisor to monitor onsite contaminated soil storage and disposal procedures. - Monitor air quality continuously during excavation operations at all locations containing hazardous material. - Coordinate contaminated soils and hazardous substances/waste management with the appropriate federal, state, and local agencies. # Contaminated Soil Management WM-7 ■ Implement WM-4, Spill Prevention and Control, to prevent leaks and spills as much as possible. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Processes, Procedures and Methods to Control Pollution Resulting from All Construction Activity, 430/9-73-007, USEPA, 1973. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. × \mathbf{V} \square $\sqrt{}$ ## **Categories** - **EC** Erosion Control - SE Sediment Control - TC Tracking Control - WE Wind Erosion Control - NS Non-Stormwater Management Control - WM Waste Management and Materials Pollution Control #### Legend: - ☑ Primary Category - Secondary Category # **Description and Purpose** Prevent the discharge of pollutants to stormwater from concrete waste by conducting washout onsite or offsite in a designated area, and by employee and subcontractor training. The General Permit incorporates Numeric Effluent Limits (NEL) and Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements). Many types of construction materials, including mortar, concrete, stucco, cement and block and their associated wastes have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows and raising pH to levels outside the accepted range. ## **Suitable Applications** Concrete waste management procedures and practices are implemented on construction projects where: - Concrete is used as a construction material or where concrete dust and debris result from demolition activities. - Slurries containing portland cement concrete (PCC) are generated, such as from saw cutting, coring, grinding, grooving, and hydro-concrete demolition. # **Targeted Constituents** Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** - Concrete trucks and other concrete-coated equipment are washed onsite. - Mortar-mixing stations exist. - Stucco mixing and spraying. - See also NS-8, Vehicle and Equipment Cleaning. #### Limitations - Offsite washout of concrete wastes may not always be possible. - Multiple washouts may be needed to assure adequate capacity and to allow for evaporation. ## **Implementation** The following steps will help reduce stormwater pollution from concrete wastes: - Incorporate requirements for concrete waste management into material supplier and subcontractor agreements. - Store dry and wet materials under cover, away from drainage areas. Refer to WM-1, Material Delivery and Storage for more information. - Avoid mixing excess amounts of concrete. - Perform washout of concrete trucks in designated areas only, where washout will not reach stormwater. - Do not wash out concrete trucks into storm drains, open ditches, streets, streams or onto the ground. Trucks should always be washed out into designated facilities. - Do not allow excess concrete to be dumped onsite, except in designated areas. - **■** For onsite washout: - On larger sites, it is recommended to locate washout areas at least 50 feet from storm drains, open ditches, or water bodies. Do not allow runoff from this area by constructing a temporary pit or bermed area large enough for liquid and solid waste. - Washout wastes into the temporary washout where the concrete can set, be broken up, and then disposed properly. - Washout should be lined so there is no discharge into the underlying soil. - Do not wash sweepings from exposed aggregate concrete into the street or storm drain. Collect and return sweepings to aggregate base stockpile or dispose in the trash. - See typical concrete washout installation details at the end of this fact sheet. #### **Education** Educate employees, subcontractors, and suppliers on the concrete waste management techniques described herein. - Arrange for contractor's superintendent or representative to oversee and enforce concrete waste management procedures. - Discuss the concrete management techniques described in this BMP (such as handling of concrete waste and washout) with the ready-mix concrete supplier before any deliveries are made. #### **Concrete Demolition Wastes** - Stockpile concrete demolition waste in accordance with BMP WM-3, Stockpile Management. - Dispose of or recycle hardened concrete waste in accordance with applicable federal, state or local regulations. ### **Concrete Slurry Wastes** - PCC and AC waste should not be allowed to enter storm drains or watercourses. - PCC and AC waste should be collected and disposed of or placed in a temporary
concrete washout facility (as described in Onsite Temporary Concrete Washout Facility, Concrete Transit Truck Washout Procedures, below). - A foreman or construction supervisor should monitor onsite concrete working tasks, such as saw cutting, coring, grinding and grooving to ensure proper methods are implemented. - Saw-cut concrete slurry should not be allowed to enter storm drains or watercourses. Residue from grinding operations should be picked up by means of a vacuum attachment to the grinding machine or by sweeping. Saw cutting residue should not be allowed to flow across the pavement and should not be left on the surface of the pavement. See also NS-3, Paving and Grinding Operations; and WM-10, Liquid Waste Management. - Concrete slurry residue should be disposed in a temporary washout facility (as described in Onsite Temporary Concrete Washout Facility, Concrete Transit Truck Washout Procedures, below) and allowed to dry. Dispose of dry slurry residue in accordance with WM-5, Solid Waste Management. # Onsite Temporary Concrete Washout Facility, Transit Truck Washout Procedures - Temporary concrete washout facilities should be located a minimum of 50 ft from storm drain inlets, open drainage facilities, and watercourses. Each facility should be located away from construction traffic or access areas to prevent disturbance or tracking. - A sign should be installed adjacent to each washout facility to inform concrete equipment operators to utilize the proper facilities. - Temporary concrete washout facilities should be constructed above grade or below grade at the option of the contractor. Temporary concrete washout facilities should be constructed and maintained in sufficient quantity and size to contain all liquid and concrete waste generated by washout operations. - Temporary washout facilities should have a temporary pit or bermed areas of sufficient volume to completely contain all liquid and waste concrete materials generated during washout procedures. - Temporary washout facilities should be lined to prevent discharge to the underlying ground or surrounding area. - Washout of concrete trucks should be performed in designated areas only. - Only concrete from mixer truck chutes should be washed into concrete wash out. - Concrete washout from concrete pumper bins can be washed into concrete pumper trucks and discharged into designated washout area or properly disposed of or recycled offsite. - Once concrete wastes are washed into the designated area and allowed to harden, the concrete should be broken up, removed, and disposed of per WM-5, Solid Waste Management. Dispose of or recycle hardened concrete on a regular basis. - Temporary Concrete Washout Facility (Type Above Grade) - Temporary concrete washout facility (type above grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and minimum width of 10 ft; however, smaller sites or jobs may only need a smaller washout facility. With any washout, always maintain a sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations. - Materials used to construct the washout area should conform to the provisions detailed in their respective BMPs (e.g., SE-8 Sandbag Barrier). - Plastic lining material should be a minimum of 10 mil in polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material. - Alternatively, portable removable containers can be used as above grade concrete washouts. Also called a "roll-off"; this concrete washout facility should be properly sealed to prevent leakage, and should be removed from the site and replaced when the container reaches 75% capacity. - Temporary Concrete Washout Facility (Type Below Grade) - Temporary concrete washout facilities (type below grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and minimum width of 10 ft. The quantity and volume should be sufficient to contain all liquid and concrete waste generated by washout operations. - Lath and flagging should be commercial type. - Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material. The base of a washout facility should be free of rock or debris that may damage a plastic liner. ## Removal of Temporary Concrete Washout Facilities - When temporary concrete washout facilities are no longer required for the work, the hardened concrete should be removed and properly disposed or recycled in accordance with federal, state or local regulations. Materials used to construct temporary concrete washout facilities should be removed from the site of the work and properly disposed or recycled in accordance with federal, state or local regulations.. - Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities should be backfilled and repaired. #### Costs All of the above are low cost measures. Roll-Off concrete washout facilities can be more costly than other measures due to removal and replacement; however, provide a cleaner alternative to traditional washouts. The type of washout facility, size, and availability of materials will determine the cost of the washout. ## **Inspection and Maintenance** - BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Temporary concrete washout facilities should be maintained to provide adequate holding capacity with a minimum freeboard of 4 in. for above grade facilities and 12 in. for below grade facilities. Maintaining temporary concrete washout facilities should include removing and disposing of hardened concrete and returning the facilities to a functional condition. Hardened concrete materials should be removed and properly disposed or recycled in accordance with federal, state or local regulations. - Washout facilities must be cleaned, or new facilities must be constructed and ready for use once the washout is 75% full. - Inspect washout facilities for damage (e.g. torn liner, evidence of leaks, signage, etc.). Repair all identified damage. ### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000, Updated March 2003. #### **NOTES** - 1. ACTUAL LAYOUT DETERMINED IN FIELD. - 2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30 FT. OF THE TEMPORARY CONCRETE WASHOUT FACILITY. # Sanitary/Septic Waste Management WM-9 # Categories EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control WM Waste Management and Materials Pollution Control literials Pollution Con \square #### Legend: ☑ Primary Category Secondary Category ## **Description and Purpose** Proper sanitary and septic waste management prevent the discharge of pollutants to stormwater from sanitary and septic waste by providing convenient, well-maintained facilities, and arranging for regular service and disposal. # **Suitable Applications** Sanitary septic waste management practices are suitable for use at all construction sites that use temporary or portable sanitary and septic waste systems. #### Limitations None identified. ## **Implementation** Sanitary or septic wastes should be treated or disposed of in accordance with state and local requirements. In many cases, one contract with a local facility supplier will be all that it takes to make sure sanitary wastes are properly disposed. #### Storage and Disposal Procedures Temporary sanitary facilities should be located away from drainage facilities, watercourses, and from traffic circulation. If site conditions allow, place portable facilities a minimum of 50 feet from drainage conveyances and traffic areas. When subjected to high winds or risk of high winds, temporary sanitary facilities should be secured to prevent overturning. ## **Targeted Constituents** Sediment Nutrients Trash **☑** Metals Bacteria Oil and Grease Organics ## **Potential Alternatives** # Sanitary/Septic Waste Management WM-9 - Temporary sanitary facilities must be equipped with containment to prevent discharge of pollutants to the stormwater drainage system of the receiving water. - Consider safety as well as environmental implications before placing temporary sanitary facilities. - Wastewater should not be discharged or buried within the project site. - Sanitary and septic systems that discharge directly into sanitary sewer systems, where permissible, should comply with the local health agency, city, county, and sewer district requirements. - Only reputable, licensed sanitary and septic waste haulers should be used. - Sanitary facilities should be located in a convenient location. - Temporary septic systems should treat wastes to appropriate levels before discharging. - If using an onsite disposal system (OSDS), such as a septic system, local health agency requirements must be followed. - Temporary sanitary facilities that discharge to the sanitary sewer system should be properly connected to avoid illicit discharges. - Sanitary and septic facilities should be maintained in good working order by a licensed service. - Regular waste collection by a licensed hauler should be arranged before facilities overflow. - If a spill does occur from a temporary sanitary facility, follow federal, state and local regulations for containment and clean-up. ####
Education - Educate employees, subcontractors, and suppliers on sanitary and septic waste storage and disposal procedures. - Educate employees, subcontractors, and suppliers of potential dangers to humans and the environment from sanitary and septic wastes. - Instruct employees, subcontractors, and suppliers in identification of sanitary and septic waste. - Hold regular meetings to discuss and reinforce the use of sanitary facilities (incorporate into regular safety meetings). - Establish a continuing education program to indoctrinate new employees. #### Costs All of the above are low cost measures. # Sanitary/Septic Waste Management WM-9 ### **Inspection and Maintenance** - BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events. - Arrange for regular waste collection. - If high winds are expected, portable sanitary facilities must be secured with spikes or weighed down to prevent over turning. - If spills or leaks from sanitary or septic facilities occur that are not contained and discharge from the site, non-visible sampling of site discharge may be required. Refer to the General Permit or to your project specific Construction Site Monitoring Plan to determine if and where sampling is required. #### References Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.